
Parallel Image Processing with CUDA

Austin Bond , Thomas (TJ) Davies , Andrew Fleming , and Justin Newman

James Madison University Department of Computer Science, Harrisonburg, VA 22801, United States

Github Repository, Trello Board

We have spent this semester developing CUDA implementations of many popular image processing tech-
niques. CUDA, or Compute Unified Device Architecture, is a parallel computing collection of libraries, tools,
and technologies developed by NVIDIA. It allows software developers to harness the power of Graphics Pro-
cessing Units for general-purpose computing tasks, not just graphics rendering.

Introduction

Our final project includes both serial and parallel implementations for many image processing techniques.
For our project we have chosen to implement greyscale, rotation, targeted color extraction, and pixel sorting.
We were able to see significant speed up on all of our image processing techniques and tested them on a
variety of images. “Correctness” with image processing is often in eye of the beholder, so we used “Image
Magick” to compare images before and after filters were run in addition to manual checking. Our one-touch
testing script can be run using the command “bash test.sh” from within the project directory. This script
begins by testing all of our deterministic options for correctness. “Deterministic Options” are options for
our program that will result in the same image every single time. The script will then run our program using
every option and a variety of thresholds. The timing results for each option-threshold pair will be printed
to standard out and the images will be stored in a “test” directory.

1

https://github.com/JustinMatthewNewman/cs470_CUDA.git
https://trello.com/invite/b/9Oh3qrU4/ATTI7e0dcdcf3f64b819a847406d0ea0416a1DECE38B/cuda


Greyscale

This greyscale function takes an input image represented by row pointers and converts it to a greyscale
image. The dimensions of the input image are given by width and height. The function iterates over every
pixel in the input image using nested loops. The outer loop iterates over the height (rows) of the image,
while the inner loop iterates over the width (columns) of the image. For each pixel, it calculates the average
of the red, green, and blue channels to obtain a greyscale value. This greyscale value is then assigned to
the red, green, and blue channels of the corresponding pixel in the output image. The alpha channel of
the input image is preserved, meaning that the transparency of each pixel remains unchanged in the output
image. The pixel is then stored in a new image buffer named “out pixel” which corresponds to the memory
addresses in the parameter out row pointers. After this function is executed, out row pointers contains the
greyscale version of the input image.

Taking an existing serial function and convert-
ing it to a working CUDA kernel was, a huge ob-
stacle. Careful consideration of memory allocation
was needed to move data correctly to GPU memory
in order to perform GPU computations. Research-
ing how libpng allocated memory for its read func-
tion was crucial to figuring out a CUDA implementa-
tion. Tinkering with the original libpng read function
proved to be too difficult, so we compromised with
a basic copying operation into new CUDA synced
memory. Coupled with trial an error, we successfully
transferred the necessary png image information onto
synced CUDA memory. Afterwards, modifying the
serial imaging processing functions to account for the
parallel nature of GPU computation was a chore. Es-
tablishing the technique of distributing work across
grid and threads is conceptually tough. Nonetheless,
we built working solutions for some of our basic fil-
ters. The next major roadblock that we encountered
was that we experienced very slow saving speed. It
slowed down our testing procedures to a crawl. Upon
further investigation, we discovered that the issue was
in the write utility. After reviewing documentation of
libpng, we discovered that a medium amount of image
compression was enabled by default in the write func-
tion. For the time being we have disabled this com-
pression, which immensely improved the write speed
of massive input files. Testing will be far faster as a
result.

2



Rotate

The rotate90 function turns an RGBA image 90 degrees to the right. You might see this used in applications
like image editing apps, computer vision, or just to show a picture the right way up. The function needs
four things to work: two sets of row pointers (one for the input image and one for the output image) and the
width and height of the image. Inside the function, there are two loops that go through all the pixels in the
input image. The outer loop iterates through the rows (y-axis) of the image, while the inner loop iterates
through the columns (x-axis).

In order to find the pixel’s new position, our function
switches the x and y positions and then subtracts the
original y position from the height of the image mi-
nus one. After that, it moves the RGBA values of
the input pixel to the output pixel in the new spot.
The rotate90 function is a simple and efficient way to
rotate images and can be added to bigger programs
or libraries very easily. It’s a helpful starting point
for more complicated image tasks, like flipping, mir-
roring, or resizing pictures. By using this function,
people can make cooler image editing tools and al-
gorithms to improve their apps and fix all sorts of
image-related problems.

The rotate90 function benefits from its CUDA im-
plementation quite a bit. As the block size increases,
the time taken decreases up until a size of around 64.
After that all times are around 1/3 of the serial im-
plementation and continues to scale as the image size
increases. This is one of our deterministic functions
which means that every single time this runs it will re-
sult in the same output image. In order to test this we
used ImageMagick’s compare command to compare
the serial and parallel implementations. We would
also do manual checking to determine whether or not
the image was rotated correctly.

3



Pixel Sort

Pixel sorting is an artistic method where pixels in an
image are sorted based on their brightness or color
values, creating visually appealing patterns or effects.
In this specific implementation, the sorting is done
row by row, and only pixels below a certain bright-
ness threshold pixel segments are sorted. The get-
Brightness which was remaned computeBrightness in
the parallel code is a helper function which calculates
the brightness of a pixel by averaging its red, green,
and blue components. We denote the brightness as
∆A.

∆A = (R+G+B)
3

The algorithm can be broken down into the fol-
lowing steps. The pixelSort function iterates through
each row of the image, sorts the pixels below the
threshold in segments and writes the sorted pixels
to the output image. It sorts the unsorted pixel ar-
ray based on the brightness using a bubble sort algo-
rithm. The algortihm uses helper functions returns

the x-coordinate of the first dark pixel in a row by
checking if ∆A < threshold, starting from a given x-
coordinate. If all remaining pixels are brighter than
the threshold, it returns -1.The algortihm uses an-
other helper function to return the x-coordinate of
the next bright pixel in a row by checking if ∆A >=
threshold. If there are no more bright pixels in the
row, it returns the last x-coordinate in the row.

The main loop in the pixelSort function iterates
through each row in the input image. It calculates
the length of the pixel segment to be sorted (sortin-
gLength). Then the function allocates memory for
the unsorted and sorted pixel arrays and fills the un-
sorted array with the current segment of sorted pix-
els. This function benefits from a 20x speed up when
compared to the serial version which grows as the im-
age size increases. After processing all the rows, the
output image will have sorted darker pixel segments
in each row based on their brightness. The sorting
creates visually interesting patterns that can be used
for artistic purposes or other image processing tasks.

CUDA shown in light blue.

4



Color Extraction

Color extraction is an incredibly common and useful tool identifying one feature of an image or removing a
uniform background of a distinct color. The problem is the method of identifying a color and comparing it
to others. Simple formulae for calculating a color’s feature such as luminosity or averaging is insufficient for
complex images with many gradients across its color palette. Additionally, we wanted to set transparency
across vacant space after extraction.

r̄ =
C1,R+C2,R

2 , ∆R = C1,R − C2,R, ∆G = C1,G − C2,G, ∆B = C1,B − C2,B

∆C =
√(

2 + r̄
256

)
∆R2 + 4∆G2 +

(
2 + 255−r̄

256

)
∆B2

We opted for a color diff function as described by Thiadmer Riemersma of CompuPhase [5]. It uses a a
weighted euclidean distance formula with a red mean and color diffs to calculate a general difference between
two colors. It’s an approximate calculation that superimposes a CIELUV color model onto existing RGB
values.

Filtering by color wasn’t enough. A lot resid-
ual information remained after screening for color,
so some kind of noise filtration was necessary to cre-
ate a coherent image. This is when the median filter
comes into play. An image median filter is a post pro-
cess effect that finds the average pixel color around
a middle pixel and inserts the median of those colors
into the target coordinate [6]. It’s good at remov-
ing excess digital noise along with salt and pepper
noise. For our purposes, it smoothed out areas of the
image that required uniform transparency. The prob-
lem with this filter is it’s run time. Median filtering
uses a sorting technique with O(n2) run time, which
is terribly slow in serial.

As seen in the photos of the train, the grainy im-
age on top is run through a CUDA accelerated 5x5
median filter. The end result is substantially more co-
herent while taking less than 50 milliseconds to com-
pute at approximately 720p resolution. This same
process is more than 30x slower in serial. Edges have
been preserved to a reasonable degree. What’s par-
ticularly interesting is how the pixel order has been
shifted substantially and yet a more coherent output
is obtained. Color perception is deceptive. It plays
a crucial role when complex filtering techniques are
combined.

5



Tissue under a microscope Extracted membrane structure (170 threshold)

Original Serial (1.7s) CUDA (65ms) Diff

After color diffing and median filtering, we arrive at a visual paradox after processing an image. The ex-
tracted jellyfish from serial and CUDA removal appear the same to the human eye, yet are entirely different
according to (apart from the transparent background) an ImageMagick diff . How?

The answer lies in the median filter, CUDA’s non-determinism, and human perception. Since median filter-
ing requires surrounding pixel information, each CUDA thread will make it’s judgement of the median in
that frame of time, with that instance of color information. Operations are asynchronous. In contrast, serial
mode sorts in order and will judge differently because preceding pixels have been filtered. We argue that a
CUDA implementation would be wrong (and much slower) if the diff was the same. Comparisons prove that
CUDA threads are filtering independently in parallel. It explains the 25x speedup we obtained. Visually the
results are comparable, so who would wait 1.7 seconds to process an image of modest resolution when the
GPU does it in 65 milliseconds? Consider processing an entire HD video. It’s the difference between having
real-time filtration vs. a lengthy post-production edit. There is no right or wrong when removing heavy
noise or applying creative effects. Color gradient shifts are minute when they are at the pixel level. These
kinds of discrepancies between serial vs. GPU image processes is a theme that continues in pixel sort.

6



7



Future Work

For our future work on this project we hope to add a social media style interface as a front end. We wish to
include more features, and ways for users to store and share the images they create with our project. Friends
would be able to add filters and edit each other’s images, while having a board where they could pin their
favorites. We would also include real-time editing software so that users could test different thresholds for
our various filters before selecting their favorite. We would also like to add more video functionality. Where
we could edit a video one frame at a time with our existing set of features, and recompile the video at the
end. We would also like to experiment with using gigapixel images to see how our code’s run-time changes.

Acknowledgements

Special thanks to Dr. Lam for introducing us to CUDA and its benefits. Learning about this powerful tool
has been an eye-opening experience that has greatly enhanced our understanding of parallel programming.
His guidance and expertise has been instrumental in helping us understand the intricacies of this technology.
Through his clear and concise explanations, we have gained a deep appreciation for CUDA and will apply
this knowledge to our future projects.

Images are courtesy of Pexels. Color extraction techniques were inspired by Ian Che Te and CompuServe.

References

[1] An even easier introduction to Cuda. NVIDIA Technical Blog. (2022, August 21). Retrieved
May 5, 2023, from https://developer.nvidia.com/blog/even-easier-introduction-cuda/

[2] ASDFPixelSort. (2022). PixelSorting [Code repository]. GitHub.
https://github.com/kimasendorf/ASDFPixelSort

[3] Ianchute. (2018, February 22). Background removal (CIELUV color thresholding). Kaggle.
Retrieved May 5, 2023, from
https://www.kaggle.com/code/ianchute/background-removal-cieluv-color-thresholding/notebook

[4] Pexels. (n.d.). Retrieved May 6, 2023, from https://www.pexels.com/
[5] Riemersma, T. (2019, May 23). Colour Metric. CompuPhase. Retrieved May 5, 2023, from

https://www.compuphase.com/cmetric.htm
[6] Wikimedia Foundation. (2023, April 20). Median filter. Wikipedia. Retrieved May 5, 2023, from

https://en.wikipedia.org/wiki/Median filter

8


